
(page number not for citation purpose)

1
*Corresponding author. Brian.Krisler@Raytheon.com

Research in Learning Technology 2018. @ 2018 B. Krisler and R. Alterman. Research in Learning Technology is the journal of the Association for

Learning Technology (ALT), a UK-based professional and scholarly society and membership organisation. ALT is registered charity number 1063519.

http://www.alt.ac.uk/. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix,

transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology
Vol. 26, 2018

ORIGINAL RESEARCH ARTICLE

Inline training: a technique for continuous, within-task learning

Brian Krislera*and Richard Altermanb

aRaytheon BBN Technologies, Information and Knowledge Technologies, Cambridge, MA, USA;
bDepartment of Computer Science, Volen National Center for Complex Systems, Brandeis
University, Waltham, MA USA

(Received 31 July 2017; final version received 5 February 2018)

As software continues to grow in power and complexity, frequent on-the-job train-
ing is essential to maintain a proficient and productive skill set. However once a
base operational skill set is attained, software users rarely continue to become pro-
ficient with the tools they use on a daily basis. This lack of proficiency results in the
frequent occurrence of workflow interruptions due to the continued locating and
re-locating of the operators required to perform both new and routine tasks. Aids
such as reference cards and application help systems exist to make the user aware
of efficient methods for task completion; however, these resources are seldom used.
This study presents a new and efficient approach to help software users continue
to learn about the tools they use to complete their work. This new approach to
learning, called inline training, leverages common workflow interruptions to facil-
itate the discovery of new application knowledge. At issue is fitting the amount of
work necessary to use the trainer into the already occurring interruption window.
By understanding the amount of within-interruption work tolerated by the user,
including an inline trainer within the window, promotes a deeper understanding of
the application, resulting in a more efficient workflow.

Keywords: training; continuous learning; learning; software training; interruptions

Introduction

In the modern technological landscape, the tools required to perform everyday tasks
change at a rapid pace. Therefore, today’s workers must adjust to improvements to the
applications that support their work-related activities (Boothby, Dufour, and Tang
2010). The drive for increased productivity, mixed with the pace of technology evo-
lution, makes essential the development of learning technologies for users to remain
competitive in the modern workplace (Gravill and Compeau 2008).

Although the skills learned in the classroom are an important starting point, in
this rapidly changing environment, continuous learning is imperative. The research re-
ported in this article explores inline training as a training style that weds the everyday
use of a technology with incremental learning and training, which is directly relevant
to the activities of the user (Krisler 2014).

This article closely examines how users interact with the tools they use on a daily
basis. Initially, they develop a working knowledge of the interface. With this, users can
find their way around the interface to complete routine tasks. However, the necessity
to get work done prevents the user from progressing beyond a basic understanding of

mailto:Brian.Krisler@Raytheon.com
http://www.alt.ac.uk/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

2� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

the application (Carroll and Rosson 1987). This failure to develop proficiency results
from a strong dependence on basic operators. This limited functional knowledge is
the cause of workflow interruptions. These slowdowns manifest themselves through
searching for known or ‘hoped for’ operations.

Presented here is an analysis of an experiment designed to leverage the naturally
occurring workflow interruptions in normal everyday activities as learning oppor-
tunities. This inline trainer enables an everyday user to leverage common workflow
interruptions as learning opportunities, that is, when the user interrupts his/her main
task to focus on how to use an application. Instead of perform and forget, they learn
and perform.

A between-participants experiment was designed where three groups completed
multiple task sets over a 2-day period. The participant actions were closely examined
from the time the flow of activity was disrupted until the time the primary task was
resumed. The data show that the interruptions exist and that the users are willing to
leverage an inline during those interruptions.

The experimental analysis will focus on the ability of the participants to learn
within two types of interruptions: (1) Insufficient knowledge interruptions, where the
user disrupts the task to search the menus for a solution and (2) Re-location interrup-
tions that occur when the user must re-locate previously found or assumed to exist
operators.

For most users, these two types of application-related interruptions are frequent
and inescapable, presenting opportunities for introducing continued learning. This
opens new opportunities for developing training platforms that would encourage the
end-user to explore and adapt the application and learn alternate and better ways to
complete common tasks.

Background

Once a user attains an intermediate level of application knowledge, training has
stopped and his/her focus is now directed towards productivity. Ideally, however,
training would never stop. With each new version, the functional set of a software
application increases (Findlater and McGrenere 2004), and to remain effective, the
user’s knowledge of the tool should also increase. Through continued learning of the
ever-increasing operator set of an application, more advanced functionality could be
leveraged and more efficient work patterns would emerge.

However, limitations in training prevent all but the most dedicated users from
effectively attaining proficiency. Once a sufficient level of working knowledge is estab-
lished, a training gap occurs, where current methods fail to encourage the intermedi-
ate user to advance (Gupta, Bostrom, and Huber 2010). Because of this limitation in
training, most users tend to plateau in their learning (Gray 2017; Olfman and Mandvi-
walla 1994). Ideally, training would provide the necessary mechanisms to elevate users
above this plateau by allowing them to ration and prioritize their learning through
aids, such as the use of a learning cache.

Caching is a mechanism that allows users to store, in an easily accessible location,
operations they recently discovered but have not yet mastered. Caching addresses the
issue of prioritized learning (Buckler 1996), where only the operators relevant to the
current work task are part of the learning agenda. When there is too much content
to learn, preferential ordering of the material is essential for successful acquisition.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 3
(page number not for citation purpose)

Multiple techniques have been explored for preferential ordering of the operators
displayed in an interface, such as split menus (Sears and Shneiderman 1994), which
are aimed at easing relocation through reordering.

The wholesale application of this technique is unfortunately fraught. The devel-
opment of the location of the operator in the menu occurs through the process of
implicit learning (Reber 1989), where over a period of time, the structure of the envi-
ronment is learned and exploited to guide the search effort. If the menu structure loses
its static nature, the ability to fully develop the visual-spatial location of the operator
is lost. If the whole menu becomes dynamic, over the long term, the cost of re-finding
operators will remain constant. To address the spatial consistency issue, Findlater
et al. (2009) have developed the concept of ephemeral adaptation; while improving
overall usability of the interface, this technique still relies on searching as a strategy
for locating functionality.

Reference cards are another form of preferential ordering that provide the ability
to quickly recall information. Reference cards (Goodwin 1994; Haramundanis 2014)
have become a common approach in helping users quickly find functionality and in
assisting the transition from menus to keyboard shortcuts.

These techniques reflect the designers’ views on what are basic and/or important
operators for the user to know about. However, once the user becomes comfortable
with an application, the ability of the designer to effectively predict and stage the next
set of useful operators diminishes as the tool use becomes more specialized. Here, the
prioritization task should transfer from the designer to the user.

Another approach to continuous training is Caching. Caching, a form of user-
controlled prioritization, is more effective for advanced users because it provides a
personalized learning experience aligned with the needs and requirements of the user
(Eagan and Stasko 2008). Although an effective technique for continuous learning,
current interface designs do not facilitate caching. Instead, a cache used to reduce the
impact of an interruption must be explicitly stored by the user (Minassian, Muller,
and Gruen 2004). An alternative is to incorporate a cache as a component of an inline
trainer, where it can be efficiently integrated into the users’ workflow.

Approach

Interruptions are common (Digmayer and Jakobs 2014). They are so common, in
fact, that it has been observed that workers switch tasks due to an interruption about
every 12 min (González and Mark 2004). Interruptions vary (McFarlane and La-
torella 2002) in size and are often detrimental (Mark, Gonzalez, and Harris 2005),
with the worker easily losing their train of thought and over 40% of interrupted tasks
(O’Conaill and Frohlich 1995) never getting resumed.

To avoid this issue, research has been conducted on training technologies designed
to reduce the duration of workflow interruptions (Matejka, Grossman, and FitzMau-
rice 2011).

However, interruptions are not always a hindrance (Jin and Dabbish 2009) and
can actually aid task completion. Furthermore, by leveraging an already occurring
interruption, the overall cost of the interruption is reduced (Iqbal and Bailey 2007).
The question addressed within this study is as follows: during frequent and expected
interruptions, are users willing to do the additional work necessary to increase their
understanding and skill with the applications used on a daily basis?

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

4� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

This study will focus on evaluating a learning technology designed to leverage two
types of application-related interruptions as training opportunities:

Insufficient Knowledge: Insufficient application knowledge manifests through the
search of a new operator in the interface. Discovering an operator in a menu is a
process of model matching (Norman 2013). Menus facilitate matching through struc-
tured organization (Hollands and Merikle 1987). However, when an operator is not
easily located, an interruption occurs.

Re-location: Once an operator has been discovered, there is no guarantee that
it will be easily re-discovered (Kim and Ritter 2013). When the direct path to
attaining a goal is not the most efficient, a knowledge error occurs (Zapf et al.
1992). Not recalling the location of an operator on a menu introduces unnecessary
searching.

This study will show that during these interruptions, participants will leverage an
inline trainer to improve their workflow by (1) learning the application’s underlying
conceptual model, (2) discovering new operators, and (3) caching knowledge for fu-
ture learning.

To evaluate how users interact with their tools, and to assess their overall will-
ingness to leverage interruptions as learning opportunities, interruption-related data
were collected of participants completing a series of task sets over a 2-day period
using the core OS X applications: Finder, Mail, and Safari.

To effectively analyze the results of the experiment, tools were created that enabled
the recording of user actions and generated a chronological event transcript for each
participant. By recording data at this level, it was possible to identify when each par-
ticipant struggled and further determine what they were doing during each observed
interruption.

Experimental design

The experiment design consisted of three task sets replicating typical, daily applica-
tion interactions within the categories: working with files, using a web browser, and
interacting with an email client.

For each task set, participants were asked to complete one or more objectives,
which, based on the skill level of the participant, could be completed using a variety
of approaches. For example, in one task, participants were asked to locate information
on the Internet and then email a link to the page. This could be accomplished through
simple copy and paste, or through the use of a special mail link operator in the web
browser. Here, the experiment design tested how participants might avail themselves
of a simpler, but lesser known path toward emailing a web link. We established three
test conditions: (1) a control group which would be left to its own devices, (2) a ref-
erence card group offered a standard, paper-based summary of features, and (3) an
inline trainer group given access to the Learn From Friends (LFF) (see section ‘The
LFF trainer’) inline training tool.

All participants completed the first task set without any additional training. This
was conducted to establish a baseline comprehension against which we were able
to analyze. Prior to the second task set, all participants received a training manual,
which summarized the applications’ more advanced features. This traditional self-
help meant that all participants had straightforward access to the answers for all the
experiment’s tasks.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 5
(page number not for citation purpose)

The experiment was completed over the course of two consecutive days. The ob-
jective here was the testing of retention: could participants remember any of the new
features to execute slight variations on the previous day’s tasks.

The participants relied on the standard application interfaces to complete the ex-
periment. No modifications were made to Finder, Mail, or Safari. At any point in the
experiment, participants were also permitted to use the applications’ built-in help sys-
tems. They were also free to access information from the Internet, that is, using Google
to find out how to solve a specific task. Therefore, in terms of self-based learning, our
participants had unfettered access through manuals, online help, or the Internet. In
addition to these resources, participants in the reference card group were given a pen
and a single page printout of keyboard shortcuts for the three primary applications.
This sheet listed the application operators and associated keyboard shortcuts typical
of all software reference cards. During the experiment, the participants in this group
could mark up, highlight, or annotate the reference card as needed. Participants in
the training group were presented with a 10-min screencast tutorial demonstrating the
basic features and functionality of the training tool.

Participants

A total of 21 male and female students participated in the experiment. The partici-
pants had a mean number of college years attained as 3.22 (SD = 1.22). Prior to the
experiment, each participant completed a survey assessing his or her own skill level
and daily computer usage. A majority of the participants rated themselves as ‘much
experienced’ (i.e. they classified themselves as having vast computer experience). They
all stated they used a computer ‘several times a day’.

On the first day of the experiment, each participant was briefed on the procedure
and randomly assigned to one of the three groups: control, reference card, and LFF
training group.

All of the participants were compensated for their participation. On completion
of the first day, the participants were given $5, and on the follow-up day, another $10
for a total of $15. Twenty-one participants participated, with each group containing
seven participants. Two of the participants in the LFF group did not return for the
follow-up day.

Tasks

The experiment consisted of 25 tasks that could be performed through a mixture
of standard or lesser-known interface operations. The expectation was that all of
the participants would exhibit some inefficient behaviors in how they completed
the work.

Each set of tasks was designed to capture how participants worked outside of a
typical experiment’s boundaries where they were free to complete the tasks as they
wish, in the order they preferred. Many of the same operators were frequently re-
quired within and across tasks. This re-introduction of operators created a repetitive
pattern with the intent of leveraging new knowledge. Participants were also instructed
to order the tasks as they saw fit, tackling easier ones first if needed. And participants
were told they could abandon a task if it was too hard. The experiment placed mini-
mal constraints on the participants’ workflows.

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

6� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

Figure 1 shows an initial task from set one, which established the baseline knowl-
edge of the participants. It was a clear multi-step process for moving and creating new
files. This was typical of all tasks throughout the three-step process.

Apparatus

All participants used one of two 15-inch MacBook Pro’s running OS X 10.8 Moun-
tain Lion with a high-speed wireless Internet connection. The task bar in the operat-
ing system contained only the three critical applications for the experiment: Finder,
Safari, and Mail.

Each laptop contained the experiment training software. For the participants not
in the LFF group, the visual windows for the trainer were disabled and the trainer ran
in the background, collecting data.

The LFF trainer
The LFF inline trainer is a custom developed OS X application designed to run in
parallel to the main application (i.e. Finder or Safari), providing the user with the abil-
ity to quickly navigate between task-work and training (see Figure 2). The intent of
the trainer is to address the many shortcomings of existing training while leveraging
the possible opportunities inherent in workflow interruptions.

Using a split pane interface, the lower pane, consisting of multiple tabs, offered a
novel organization of all the application’s operators. Here, a concept hierarchy (Fig-
ure 3a) was created around application-specific actions like finding, searching, and
organizing. The concept hierarchy differs from the existing menu structure, in that the
operators are organized by function or concept, unlike the existing menu structures,
where a standardized cross-application consistency is maintained. For example, the
Find operator, which, in the LFF trainer, is located in the ‘Searching’ concept, is more
typically located in an application’s ‘Edit’ menu.

We grouped each application’s operators into buckets for three reasons: (1) it sim-
plified the discovery process for new features, (2) it allowed the finding of similar or
complementary features, and (3) re-finding an item via the recently used tab (Figure
3b) offered a supportive path to item reuse.

These tabs became expanded lists of operators. Each included the operators name,
the keyboard shortcut, the application menu path, and fast access to the associated
help text that did not require the launching of the built-in help system itself.

Figure 1.  Task number one as presented to each participant in the experiment. In
this task, the participant was asked to clean up a messy desktop.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 7
(page number not for citation purpose)

The second tab in the lower pane, Social Actions (Figure 3c), offered another per-
spective to an application’s operators. This pane displayed operators rank based on
their popularity among a social group, providing the user insight into how others were
finding value in the application.

The icon of a grayed-out star (Figure 3d) was another important design feature.
Appearing to the right of the operator name, the star could be clicked, turning it gold,
and marking its associated operator as a ‘favorite’. This moved the operator to the
upper pane (Figure 3e), which allowed the user to customize a list of features he/she
was most interested in. This customized pane called Favorites provided the user, via a
quick glance, access to the necessary information for locating the operators they are
in the process of learning.

As users performed experiment tasks, which required switching between applica-
tions, the content of the trainer changed correspondingly to match the current ap-
plication. By design, the LFF trainer did not provide any information not already
accessible through other user interface displays.

Procedure

Each participant was presented the following instructions:

•	 They should complete the tasks to the best of their abilities.
•	 They could use any application on the computer for completing the task.
•	 They did not need to perform the tasks in any specific order.
•	 If they got stuck, they were free to use any source of help (i.e. Internet or appli-

cation help) to find a solution.
•	 If they could not complete a task, they were free to skip it and move on.

Figure 2.  When displayed, the trainer can appear alongside the primary application,
allowing quick access to the training.

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

8� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

After completing the first assessment, the participant was handed a tutorial designed to
teach efficient usage of the three core experiment applications. This manual was roughly
six pages in length and consisted of both descriptive text and exercise callout boxes
(Figure 4) highlighting some useful (and occasionally obscure) operators. The partici-
pant was given as much time as required to read the manual and perform the practice
exercises. Upon completion of the tutorial, the participant started the second task set
by clicking a bookmark in the web browser. The second task set was disseminated as
a series of emails. The participant was told to expect nine emails during the second
task. At the completion of the second task, the participant was compensated for his/her

Figure 3.  The trainer is composed of multiple mechanisms designed to leverage op-
portunistic interruption-based training.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 9
(page number not for citation purpose)

participation. On the following day, participants in the training group had the state of
the trainer preserved, ensuring that any staging, such as the caching of operators, was
available for the final task. For the participants in the reference card group, they were
handed back their reference card prior to starting. Like task set two, each task arrived
via email. The participant was told to expect nine emails, one per task. At the comple-
tion of the final task, the participant was compensated for the day’s participation.

Data collection
To evaluate how each participant interacted with the system during the experiment,
an event logger was developed that recorded experiment interactions. Each observed
event contained nine fields to facilitate offline analysis (see Table 1).

Table 2 is a snippet from a collected transcript. In this block, a sequence of actions
performed by the participant 387C during task 1.1 is presented. In line 1, the exper-
iment proctor launched the event-recording tool. Five minutes later, the application
Finder became the primary application, and the File menu was opened (line 2). In the
File menu, the New Folder operator was selected with the mouse (line 4).

By analyzing the transcripts, we were able to recreate each participant’s actions
and discover how they searched, found, and executed the required operators for
completing each task.

Figure 4.  Exercise box examples from the tutorial. Each participant was presented
with a tutorial containing practice exercises. The exercises reinforced the operations
introduced in the tutorial. Some exercise boxes allowed the participant to choose their
preferred interaction method, while others specifically taught the keyboard shortcut
for the operation.

Table 1.   All recorded events consisted of nine fields to facilitate data analysis.

Label Description Example

TID The task id 1.1
PID The participant id 708A

DAY The day of the observed event 1
TIMESTAMP The timestamp of the event 21113100500
APPLICATION The active application for the event Finder
ACTION The observed action File/New Finder Window
INTERFACE The event interface (Keyboard:0, Mouse:1) 1
DETAILS Auxiliary information about the event Marked Favorite
GROUP The experiment group of the participant Control

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

10� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

Overview of the results

Analysis of the results showed that when new application knowledge was required
to complete a task, participants tended to spend their time focused on searching and
re-searching the application menus. When it came to frequent reuse of an individual
operation, participants tended to work with the knowledge they had, instead of try-
ing to operate more efficiently, even when resources where available that could have
reduced their workload. However, the addition of an inline trainer demonstrated effec-
tiveness in quickly providing the knowledge necessary to proceed with the task. Partici-
pants used the inline trainer to discover and better understand the operators and set up
future training by caching operator knowledge that they wanted to learn. These results
demonstrate that incorporating learning into the workflow, via a learning platform that
is concise and task-targeted, is an effective means to encourage continuous learning.

Menus compensate for a lack of knowledge
The experiment asked participants to perform work, which required modifications to
their existing routines. The data showed that when users did not have enough appli-
cation knowledge to proceed, they fell back to the menus for a solution. This menu
dependence resulted in extensive and ineffective searching.

To determine the extent of menu dependency, we analyzed the exact steps per-
formed by each participant during the experiment and created a search cost measure.

Search cost measured the amount of extra work expended by a participant to per-
form an operator by computing the difference between the observed actions and the
expected actions. The example shown in Table 3 compares the efficient menu-based
execution of the Clean Up By Kind operator versus an observed interaction, where
the user was unsure. The efficient search required three actions compared to the ob-
served with five actions, resulting in a search cost of 2 (5 observed – 3 expected).

Table 2.  A recorded experiment transcript segment showing the opening and closing of a
menu followed by a keyboard performed New Folder operation.

S.
No.

TID SUBID DAY TS APP ACT INT DETAIL GROUP

1 SETUP 387C 1 20121025140538 LFF 2 LAUNCHED Ctrl
2 1.1 387C 1 20121025141028 Finder MENU_OPENED 2 File Ctrl
3 1.1 387C 1 20121025141028 Finder MENU_CLOSED 2 Ctrl
4 1.1 387C 1 20121025141031 Finder File/New Folder 1 Ctrl

Table 3.  A search cost was used to measure the amount of extra work performed per action
by comparing the optimal approach to the observed approach.

Search

Optimal Observed
View File
Clean Up By Edit
Kind View

Clean Up By
Kind

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 11
(page number not for citation purpose)

A search cost analysis over the entire data set showed that extra work was re-
quired to perform each operator (M = 3.68, SD = 4.93). Further analysis revealed this
extra work translated into time inefficiencies. The amount of time spent searching the
menus compared to the total experiment time revealed that an average of 9.17% of the
experiment time was spent searching the menus.

New operator knowledge comes from the menus
When a participant did not have enough knowledge about an application to proceed
with a task, she would rely on menus to provide a way forward.

Trying to discover a way to convert all of an email’s text to uppercase, the transcript
in Table 4 documents the work of one participant relying on the menus as the primary
approach to acquiring new knowledge. During the search for the Make Upper Case
operator, the participant opens and re-opens the same menu (lines 5 and 8). When a
plausible operator is found, by trial-and-error the participant discovers which operator
produces the desired results (line 6 and line 12). In this example, the process of locating
and performing a single operation required 12 interface events over the course of 33 s.

Once an operator has been found, finding on a second occasion may or may not be
easier to do. For example, one participant, while performing a desktop cleanup task,
was observed using the New Folder operator three times over the course of a minute
and a half. Often, rediscovering the operator the second and third time took more
work than it did the first time.

Initially, the operator was found in just 4 s (search cost = 1). By the third time, the
search cost increased to 25, with the participant requiring 10 s to find the operator. Diffi-
culties in relocating previously discovered operators occurred frequently in the transcripts.

Existing operator knowledge drives usage
When a new task is encountered, a user will try to apply existing knowledge to achieve
their goal, cobbling together basic operations rather than seeking out a better and

Table 4.  New knowledge is attained through searching.

Observed user action

Time (sec) Menu Search Operator Performed

 1. 0 Edit
 2. 5 Attachments
 3. 6 Find
 4. 7 Spelling and Grammar
 5. 8 Substitutions
 6. 12 Text Replacement
 7. 17 Edit
 8. 19 Substitutions
 9. 19 Transformations
10. 20 Speech
11. 20 Transformations
12 33 Make Upper Case

This process of knowledge acquisition is both time-consuming and prone to error. In this example, the
participant opens multiple menus in the search of the correct operator. During this search, trial-and-error
is used to test out potential operators

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

12� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

more efficient method (Fu and Gray 2004). The frequent reuse of these kinds of pro-
cedures composed of basic operations is the basis of inefficient work habits.

Table 5 presents a transcript of a participant relying on existing knowledge to
complete the task of emailing a link to a webpage. Safari has a menu operator for per-
forming this task that was introduced in version 2.0. Prior to this operator, sending a
link involved copying and pasting the link from the browser into a new email message.
However, by using an operator that simplifies this multi-step process (Table 5), much
less user work is required. Had the participant found this operator, the search cost
would have been zero instead of six.

The transcripts show, for example, that basic operators like Copy and Paste were
used in multiple situations to compensate for the user’s lack of knowledge of an exist-
ing more powerful operation that could significantly reduce work. An over-reliance on
these procedures deterred discovering new and more efficient methods.

To measure the extent of this over-reliance on general procedures, a task operator
analysis was performed. Table 6 lists all of the operators whose use was expected dur-
ing the experiment had each task been completed using the most efficient approach
possible. The expected column lists the total number of expected occurrences over the
course of the experiment, per participant. For example, there were five tasks that, if
completed optimally, would have used the Mail Contents of This Page operator. The
observed column presents the average observed count of each operator per partici-
pant during the experiment. The average observed count for Mail Contents of This
Page was 4.05, demonstrating that this operator was under-utilized during the exper-
iment. The difference column is the expected minus the observed. This calculation
highlighted both over- and under-utilization per operator.

The results in Table 6 demonstrate the extent of the over-reliance on general pro-
cedures across the participant base. This is apparent with the overuse of the Copy
and Paste operators. If each task were performed optimally, these operators would
have only been required five and three times, respectively; however, their actual usage
exceeded that, with actual usage being 16.38 and 16.21.

Table 5.  One type of failure observed in the experiment was the failure to locate a more effi-
cient operator to complete a task.

Observed user action

Time (sec) Menu Search Operator Performed

1. 0 Copy
Switched to mail application

2. 2 New Message
3. 5 Paste
4. 16 Send
a) When a procedure for performing a task is successful, it often becomes the default approach.

Observed user Action
(sec) Menu Search Operator Performed

1. 0 Mail Link To Page
2. 4 Send

b) Learning a more efficient operator can simplify a procedure

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 13
(page number not for citation purpose)

Other traditional sources of user interface knowledge
During the experiment, other resources for learning about the application were avail-
able, but the participants rarely took advantage of them.

All of the participants in the reference card group were given a printed reference
card. On this one-page sheet were all of the functionality and associated keyboard
shortcuts necessary to complete the experiment. However, the experiment proctor
observed that none of the participants in that group leveraged this resource. For the
participants in the reference card group, the answers were in plain view, yet no one
considered the printed sheet as a viable option for solving the experiment tasks.

Between the first and second task set, all groups were given a paper tutorial that
contained descriptions of useful operators that would help them improve their per-
formance during the experiment. Upon being handed the tutorial, the participants
were informed that reading the tutorial was not required. The average time spent with
the tutorial was 8.5 min (SD = 7.74). Of the 21 participants that participated in the
experiment, six ignored the tutorial.

After each section, the tutorial included exercise problems that allowed the partic-
ipants to practice what they just learned. For the participants that read the tutorial, at
least some practice exercises were completed (M = 10.33, SD = 8.11). There were some

Table 6.  Experiment operations and the number of times they were expected to be observed
compared to the mean observed value across all participants.

Operator Expected Observed Difference

(mean)

Google Search 13 1.80 11.2
New Message 5 2.44 2.56
Save As 3 2.00 1.00
Mail Contents of This Page 5 4.05 0.95
Mail Link to This Page 4 1.58 0.94
Compress 6 5.29 0.71
Center 2 2.00 0.00
Insert Bullet List 1 1.00 0.00
Downloads 1 1.00 0.00
Make Upper Case 1 1.00 0.00
Forward as Attachment 1 1.00 0.00
Open Location 3 0.00 0.00
Find 2 0.00 0.00
New Folder with Selection 4 0.00 0.00
Paste as Quotation 2 2.17 -0.17
Reply 9 9.19 -0.19
Forward 1 1.47 -0.47
Documents 1 1.86 -0.86
Get All New Mail 1 2.00 -1.0
New Tab 2 3.10 -1.1
Send 20 21.29 -1.29
Close Tab 1 3.75 -2.75
Create New Folder 1 4.28 -3.28
Copy 5 16.38 -11.38
Paste 3 16.21 -13.21

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

14� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

observations of the newly learned operator being used in the immediately preceding
tasks; however, many of the participants reverted back to their previous methods.

Participants were also told that they were free to use any other existing resources,
such as the application help or the Internet (e.g., Google Search), to solve a task.
The transcripts revealed that no participants ever used the application help when
they encountered an unknown task. Some participants did attempt to use a search
engine to solve tasks with mixed results.

There were 10 observed instances of participants attempting to use a Google
Search to discover how to perform a task. The success rate was low, only 30% – the
participants were unable to construct an appropriate search term to describe the prob-
lem (Ekstrand et al. 2011).

The LFF inline trainer

The LFF inline trainer expanded the opportunities for a user to explore and discover
new information about the applications they currently use on a daily basis.

Participants staged learning with caching
The LFF group was given access to a tool, LFF, that allowed them to quickly and
easily cache potentially interesting and useful operations for future recall.

Table 7 presents transcript segments of participants caching operations for
future recall.

Table 7.  Caching operations during the interruption allows the user to stage future learning.

Time Actions performed by participant

(sec) LFF Actions Finder Actions

1. 0 Expand Configuration
2. 2 Collapse Configuration
3. 4 Expand Organize
4. 8 Perform Arrange By Kind
5. 31 Cache Arrange By Kind
6. 226 Perform Arrange By Kind
7. 227 Perform Arrange By Kind
(a) Discovering and caching Arrange By Kind operator

Time Actions performed by participant
(sec) LFF Actions Mail and Finder Actions

1. 0 Perform Send
2. 3 Expand Recently Used
3. 9 Cache Send
4. 12 Cache Get All New Mail
5. 13 Cache Reply
6. 19 Cache Paste as Quotation
7. 25 Cache Forward
8. 50 Expand Organize
9. 53 Perform Documents
(b) Caching multiple recently used operators

In these transcript segments, operations are added to the participants’ cache for future, quick recall.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 15
(page number not for citation purpose)

The transcript in Table 7 demonstrates a participant caching a recently found op-
erator. In this transcript segment, the participant is browsing the trainer concept hier-
archy (lines 1–3), where the operator Arrange By/Kind is found. After performing the
operation (line 4), the participant caches the operator (line 5) for future usage. A few
minutes after the caching, the participant was able to quickly recall and successfully
perform the operator again (lines 6 and 7).

Another example of a participant leveraging the interruption to stage future learn-
ing is presented in Table 7. In this transcript segment, the participant is seen starting
a new task by referencing the recently used operations (line 2). From this list, the par-
ticipant adds five operations to her favorites’ cache (lines 3–7). In this instance, none
of the operations cached were immediately required for the current task; however, the
participant extended her own interruption to stage these operators for future recall.

Concept hierarchy led to discovery
Most software applications contain functionally related operators, such as the For-
ward and Backward operators in a browser, or Select All and Copy, where one operator
relies upon the product of the other. Developing an understanding of the functional
relationships between operators helps the user establish a more robust conceptual
model of the application (van Merriënboer, Kirschner, and Kester 2003). Ideally, the
organization of the menu system groups together functionally related operators. But
in practice, this does not always occur. Thus, when the user is looking for a new oper-
ator, the operator may be located in an ‘odd’ place.

The inline trainer provides different access to the operator set of the application.
Helping the user to better understand the relationships between operations and the
conceptual model that underlies the operator set is the goal. Hence, a conceptual
hierarchy that better represents the preferred understanding of the application is ap-
propriate. The concept hierarchy took the menu applications and re-structured them
into an enhanced representation of the system. So, in one case, using the menu, the
user searches to find an operator to invoke, and in the other case, using the inline
trainer, the user reasons more closely about the underlying conceptual model, leading
to a deeper understanding of the overall system (Gurlitt, Schuster, and Nückles 2012).
The issue is not whether one is more efficient than the other. The issue is: during a
menu-based interruption in the main task, will users take the time to increase their
knowledge of the application beyond just finding the relevant operator.

Leveraging the interruption window to teach the user about these related opera-
tors is an opportune time to ensure increased training effectiveness. Because the intro-
duction of the new material occurs so close to the task objective, the participant can
develop a link between goal and operator that is necessary in the development of his/
her conceptual model.

Table 8 contains some transcript segments highlighting how various participants
discovered new and related operators.

The transcript in Table 8 demonstrates a participant discovering, in the LFF
trainer, the New Folder with Selection (line 5) operator while performing the task
of creating a new folder. In this task, the participants were asked to place all of the
PDF files in the Documents folder into a new folder and compress the new folder.
To solve the task, the participant navigated to the Documents folder (line 2) and
then introduced an interruption in the task to consult the Folders concept (line 3).

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

16� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

While in this interruption, the participant cached two related and potentially useful
operators: New Folder with Selection (line 5) and New Folder (line 10). After caching
the operators, the participant ended the interruption and used one of the newly cached
operators (line 11) to complete the task. In this example, the participant discovered
two possible solutions and then proceeded to use one of the newly cached operators
with the keyboard shortcut multiple times during the experiment. This demonstrated
not only a decrease in interruptions, but also an efficiency improvement.

The transcript in Table 8 also displays a participant discovering related function-
ality. While looking for an operator to move some files to the trash (line 2), the partic-
ipant also discovered the Empty Trash operator (line 4).

The concept hierarchy presented the users with a discovery method that allowed
them to find similar operators. When used in conjunction with the caching mecha-
nism, the trainer allowed the participants to stage future learning and expand their
conceptual model of the application.

Table 8.  The interactions in these tables demonstrate two instances of a participant using
LFF to discover a new operator.

Time Actions Performed by participant

(sec) LFF Actions Finder Actions

1. 0 Expand Organize
2. 3 Perform Documents
3. 35 Expand Recently Used
4. 56 Expand Folder
5. 60 Cache New Folder with Selection
6. 63 Open Edit menu
7. 79 Open File menu
8. 93 Perform New Finder

Window
9. 94 Perform Close Window
10. 101 Cache New Folder
11. 105 Perform New Folder
(a) Interweaving training and task work

Time Actions Performed by participant
(sec) LFF Actions Finder Actions

1. 0
2. 23 Expand Organize
3. 43 View the Social Cache
4. 57 Cache Move to Trash
5. 61 Perform Move to Trash
6. 64 Perform Move to Trash
7. 66 Perform Move to Trash
8. 68 Perform Move to Trash
9. 70 Perform Move to Trash
10. 90 Cache Empty Trash

(b) Using the social cache to discover operators

In (a), the participant discovers and caches two operators: New Folder with Selection and New Folder. In
(b), the participant discovers and caches two operators for working with the trash. In each of these tran-
scripts, the usage of the trainer is interweaved with the actual work task.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 17
(page number not for citation purpose)

Participants acquired a deeper knowledge with Quick Help
During the process of menu searching, research participants encountered unknown
functionality. In this case, users had two choices: (1) ignore the operator and continue
to search the menus or (2) perform the operation and observe the result. If the out-
come was undesirable, the process could be undone. In one transcript, a participant is
observed trying to figure out how to alter the text case. First the participant tries the
Paste and Match Style operator to observe its effect. Unsatisfied with the outcome,
the operation was undone, and the search resumed.

Although the second approach allows for the potential of learning to occur within
the interruption, it also has a high error rate that could result in an even lengthier
breakdown and task errors. To test the effectiveness of a learning aid designed to
teach within the interruption window, a Quick Help feature was added to the training
tool concept browser. In the training tool, each operator had a clickable icon that
would provide quick and easy access to a descriptive help for the operator without
further increasing the interruption. It accessed the help file text without launching the
help system, a secondary application.

Table 9 presents two transcript segments of participants using the quick help fea-
ture to learn more about an operator. In the first transcript (Table 9), the participant
is exploring the Organizing concept (line 14). During this exploration, the participant
discovered a potentially useful operator, Mail Contents of This Page (line 15). Decid-
ing this operator is something, the participant was interested in learning more about;
the quick help allowed the participant to quickly overview the functionality without
the potential erroneous effects of trial-and-error learning. In this instance, the opera-
tor was not an appropriate match for the current goal, which was to save the contents
of a website to their desktop.

The second transcript (Table 9) is a snippet from a task where the participants
were asked to clean up the files on their desktops. Here the participant was reviewing
the Folders concept for the Finder application (line 1), looking for a solution to the
current goal of creating a new folder. After creating the new folder (line 2), the par-
ticipant goes back to the LFF training tool to view the quick help for the New Smart
Folder operation (line 3). After reading the quick help, the participant switches back
to Finder and executes the operation New Smart Folder (line 4). Here, the partici-
pant saw an operator New Smart Folder while browsing the concepts and was able to
quickly view the descriptive. In this instance, after reading the help, the participant
determined that this operator was useful and proceeded to use the operator.

These transcripts suggest that reducing the amount of in-interruption work re-
quired to learn more about an operation will lead to discovery and increased operator
usage. If the duration of interruption is brief, the users will take the time required to
learn about previously unknown operators with the intent of shortening their future
task load. In Table 9 instead of using the typical method of drag-and-drop, the par-
ticipant looked to the New Smart Folder operation to help reduce the work necessary
in cleaning up a folder. By learning this new method, the participant expended some
extra time to reduce future work and errors.

Discussion and concluding remarks

All users, irrespective of skill level, struggle with the problem of learning to use an ap-
plication. As they work, they frequently rely on the menu to discover new knowledge

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

18� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

Table 9.  The ability to quickly access and read the help for a function was another feature that
helped the participants complete the experiment.

Time Actions Performed by participant

(sec) LFF Actions Safari Actions

 1. 0 Open File
 2. 6 Open Edit
 3. 6 Open View
 4. 7 Open History
 5. 8 Open Bookmarks
 6. 9 Open Window
 7. 10 Open Help
 8. 10 Open Window
 9. 10 Open Bookmarks
10. 11 Open History
11. 12 Open View
12. 38 View All Actions
13. 47 Expand Sharing
14. 54 Expand Organizing
15. 60 Display help for Mail Contents of This Page
16. 64 View Social Cache
17. 73 View Tips
18. 83 View All Actions
19. 92 Expand Accessibility
20. 94 Expand Configuration
21. 102 Expand General
(a) Using LFF help to learn about Mail Contents of This Page

Time Actions Performed by participant
(sec) LFF Actions Finder Actions

1. 0 Expand Folders
2. 21 Perform New Folder
3. 75 Display help for New Smart Folder
4. 83 Perform New Smart Folder

(b) Using LFF help to learn about New Smart Folder

In (a), the participant switches from searching the menus to using LFF to find a way to complete the task.
In line 15, the help for the Mail Contents of This Page was accessed. From this transcript, it can be seen that
it only required 4 s of the participants’’ time to open and review the help for this operator. In (b), another
example of a participant interweaving LFF work with task work was provided. In this example, the partic-
ipant reviews the help for the New Smart Folder operator. In this instance, after investing 8 s reviewing the
help, the participant decided to use the operator.

or to re-find operators they previously used. The data collected in this study document
the regular occurrence of these kinds of menu-related interruptions throughout the
completion of routine tasks. Participants without access to the inline trainer could
have chosen to use other resources – like an Internet search, the help system, or a ref-
erence card – but the data demonstrated that this did not regularly occur.

By incorporating an inline trainer into the workflow, some of the problems that
emerge for users to better understand an application were offset, leading to better
usage. One issue is whether or not an inline trainer will be used. In this study, evidence

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 19
(page number not for citation purpose)

was presented demonstrating participants using and re-using an inline trainer to dis-
cover and learn new operational knowledge.

Also deterring the acceptance of an inline trainer was the engagement level of the
user. Previous studies have demonstrated that engagement has a positive impact on
learning (Carini, Kuh, and Klien 2006), and our results produced similar observa-
tions. The data confirmed that engagement level among the participants in each group
varied and each of the three participant groups had some engaged users. Those users
who had access to the trainer and were engaged were willing to do the extra bits of
work necessary to improve their knowledge of the applications.

Interruptions are common and expected in the modern workplace (Noe, Clarke,
and Klein 2014). However, not all interruptions are created equal, and one type of
interruption, incurred from software menu access, creates a short disruption which
under the proper circumstances may be sufficient enough to accommodate training.
By closely examining the interactions of the user, opportunities for leveraging frequent
interruptions emerge, leading to more effective usage of the tool in the long term, with
little impact on short-term work. The inline trainer presented here is a learning technol-
ogy geared toward leveraging menu-produced interruptions to present new application
knowledge, allowing the users to expand their conceptual understanding of the tool.

This study has shown that leveraging the small, but frequently occurring interrup-
tions expected in daily software interaction, users could discover new and more effi-
cient methods for solving typical tasks. By providing the user with a means to quickly
identify and address the cause of the interruption, a more robust mental model of the
software could be developed, allowing the user to focus more on the domain and less
on the tool.

References
Boothby, D., Dufour, A. & Tang, J. (2010) ‘Technology adoption, training and productivity

performance’, Research Policy, vol. 39, no. 5, pp. 650–661.
Buckler, B. (1996) ‘A learning process model to achieve continuous improvement and innova-

tion’, The Learning Organization, vol. 3, no. 3, pp. 31–39.
Carini, R., Kuh, G. & Klein, S. (2006) ‘Student engagement and student learning: testing the

linkages’, Research in Higher Education, vol. 7, pp. 1–32.
Carroll, J. M. & Rosson, M. B. (1987) Paradox of the Active User, The MIT Press, Cambridge.
Digmayer, C. & Jakobs, E. M. (2014, October) ‘Corporate lifelong learning 2.0: design of

knowledge management systems with social media functions as learning tools’, Professional
Communication Conference (IPCC), 2014 IEEE International, pp. 1–9, IEEE, Pittsburgh.

Eagan, J. R. & Stasko, J. T. (2008, April) ‘The buzz: supporting user tailorability in awareness
applications’, Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pp. 1729–1738, ACM.

Ekstrand, M., et al., (2011, October) ‘Searching for software learning resources using applica-
tion context’, Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, pp. 195–204, ACM, Santa Barbara.

Findlater, L. & McGrenere, J. (2004, April) ‘A comparison of static, adaptive, and adaptable
menus’, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 89–96, ACM, Vennia.

Findlater, L., et al., (2009, April) ‘Ephemeral adaptation: The use of gradual onset to improve
menu selection performance’, Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1655–1664, ACM, Boston.

Fu, W. T. & Gray, W. D. (2004) ‘Resolving the paradox of the active user: stable suboptimal
performance in interactive tasks’, Cognitive Science, vol. 28, no. 6, pp. 901–935.

http://dx.doi.org/10.25304/rlt.v26.1994

B. Krisler and R. Alterman

20� Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994
(page number not for citation purpose)

González, V. M. & Mark, G. (2004, April) ‘Constant, constant, multi-tasking craziness: man-
aging multiple working spheres’, Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 113–120, ACM, Vennia.

Goodwin, D. (1994) ‘Designing a quick reference guide: a teaching case’, Journal of Technical
Writing and Communication, vol. 24, no. 3, pp. 293–308.

Gravill, J. & Compeau, D. (2008) ‘Self-regulated learning strategies and software training’, In-
formation & Management, vol. 45, no. 5, pp. 288–296.

Gray, W. (2017) ‘Plateaus and asymptotes: spurious and real limits in human performance’,
Current Directions in Psychological Science, vol. 26, no. 1, pp. 59–67.

Gupta, S., Bostrom, R. P. & Huber, M. (2010) ‘End-user training methods: what we know, need
to know’, ACM SIGMIS Database: The DATABASE for Advances in Information Systems,
vol. 41, no. 4, pp. 9–39.

Gurlitt, J., Dummel, S. & Nückles, M. (2012) ‘Differently structured advance orgainzers lead
to different initial schemata and learning outcomes’, Instructional Science, vol. 40, pp.
351–369.

Haramundanis, K. (2014) The Art of Technical Documentation, Digital Press, Charlottesville.
Hollands, J. G. & Merikle, P. M. (1987) ‘Menu organization and user expertise in information

search tasks’, Human Factors, vol. 29, no. 5, pp. 577–586.
Iqbal, S. T. & Bailey, B. P. (2007, April) ‘Understanding and developing models for detecting

and differentiating breakpoints during interactive tasks’, Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 697–706, ACM, San Jose.

Jin, J. & Dabbish, L. A. (2009, April) ‘Self-interruption on the computer: a typology of dis-
cretionary task interleaving’, Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1799–1808, ACM.

Kim, J. W. & Ritter, F. E. (2015) ‘Learning, forgetting, and relearning for keystroke-and-mouse-
driven tasks: relearning is important’, Human-Computer Interaction, vol. 30, no. 1, pp. 1–33.

Krisler, B. (2014) Continuous Software Training with Three Inline Trainers, Brandeis University,
Waltham.

Mark, G., Gonzalez, V. M. & Harris, J. (2005, April) ‘No task left behind?: examining the
nature of fragmented work’, Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 321–330, ACM, Portland.

Matejka, J., Grossman, T. & Fitzmaurice, G. (2011, May) ‘Ambient help’, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 2751–2760, ACM,
Vancouver.

McFarlane, D. C. & Latorella, K. A. (2002) ‘The scope and importance of human interruption in
human-computer interaction design’, Human-Computer Interaction, vol. 17, no. 1, pp. 1–61.

Minassian, S. O., Muller, M. J. & Gruen, D. (2004) Diverse Strategies for Interruption Manage-
ment in Complex Office Activities, IBM Research, Cambridge.

Noe, R. A., Clarke, A. D. M. & Klein, H. J. (2014) ‘Learning in the twenty-first-century work-
place’, Annual Review of Organizational Psychology and Organizational Behavior, vol. 1, pp.
245–275.

Norman, D. (2013) The Design of Everyday Things: Revised and Expanded Edition, Basic Books
(AZ), New York.

O’Conaill, B. & Frohlich, D. (1995, May) ‘Timespace in the workplace: dealing with interrup-
tions’, Conference Companion on Human Factors in Computing Systems, pp. 262–263, ACM,
Denver.

Olfman, L. & Mandviwalla, M. (1994) ‘Conceptual versus procedural software training for
graphical user interfaces: a longitudinal field experiment’, MIS Quarterly, vol. 18, no. 4,
pp. 405–426.

Reber, A. S. (1989) ‘Implicit learning and tacit knowledge’, Journal of Experimental Psychol-
ogy: General, vol. 118, no. 3, p. 219.

Sears, A. & Shneiderman, B. (1994) ‘Split menus: effectively using selection frequency to organize
menus’, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, no. 1, pp. 27–51.

http://dx.doi.org/10.25304/rlt.v26.1994

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1994 - http://dx.doi.org/10.25304/rlt.v26.1994� 21
(page number not for citation purpose)

van Merriënboer, J. J. G., Kirschner, P. A. & Kester, L. (2003) Taking the load off a learner’s
mind: instructional design for complex learning’, Educational Psychologist, vol. 38, no. 1,
pp. 5–13.

Zapf, D., et al., (1992) ‘Errors in working with office computers: a first validation of a taxonomy
for observed errors in a field setting’, International Journal of Human-Computer Interaction,
vol. 4, no. 4, pp. 311–339.

http://dx.doi.org/10.25304/rlt.v26.1994

