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Abstract

This paper describes early experiences with the Ceilidh system currently being
piloted at over 30 institutions of higher education. Ceilidh is a course-management
system for teaching computer programming whose core is an auto-assessment
facility. This facility automatically marks students programs from a range of
perspectives, and may be used in an iterative manner, enabling students to work
towards a target level of attainment. Ceilidh also includes extensive course-
administration and progress-monitoring facilities, as well as support for other forms
of assessment including short-answer marking and the collation of essays for later
hand-marking. The paper discusses the motivation for developing Ceilidh, outlines
its major facilities, then summarizes experiences of developing and actually using it
at the coal-face over three years of teaching.

Introduction

Assessment and feedback are key aspects of the educational process. This is particularly true
when learning practical skills where hands-on experience is of critical importance. Computer
programming is one such skill. Indeed, like riding a bicycle or playing the piano, it is not
possible to learn to program a computer without extensive practical experience. However,
computer programs are also notoriously difficult to assess by traditional methods such as
hand-marking printed output. Firstly, it is virtually impossible to tell by visual inspection of a
program source whether it will run at all, let alone whether it will run as required. Detailed
assessment using print-outs is simply out of the question. Secondly, program development is
an iterative process, often involving many cycles of development and testing. Hand-marking is
too slow to help in this process. These problems are exacerbated by increasing student
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numbers, particularly on first-year programming courses where class sizes in excess of a
hundred are common. A dedicated lecturer teaching such a course would be hard pressed to
manage one iteration of one exercise a week, even if he or she had little else to do. One
possible solution to this problem may be for a group of people (for example, postgraduate
assistants) to mark the solutions. However, this often leads to inconsistencies in the level of
marks awarded, and drastically increases the administrative burden.

Of course, such problems are not confined to the realm of computer programming, and there
are a number of more general problems with hand-marking paper scripts. Scripts can easily
get lost, detached or damaged. Marking on paper is inappropriate for most computer-based
learning (not just for programming). Administration of assessment is a time-consuming
process, made more difficult by having to deal with large quantities of paper. Finally, there is
increasing pressure to save paper. Our solution to these problems has been to explore the role
of the computer in directly assessing students’ programs. To this end, we have constructed a
system called Ceilidh based on an automatic assessment mechanism which tests programs
from several perspectives, including dynamic correctness (i.e. do they work?) and
programming style and complexity (i.c. are they elegant solutions?). Ceilidh also supports
course administration by providing facilities for setting exercises, handing in all types of work
online, handing out solutions, dealing with questions, and tracking and summarizing progress.

The idea of automatically assessing computer programs has direct parallels in industry where
automated test-harnesses and software quality-control environments are becoming increasingly
common. Thus, Ceilidh provides students with valuable experience of working in a quality
controlled environment. Ceilidh also aims to support the administration and assessment of a
range of courses beyond programming. To this end, we have begun experimenting with other
complementary assessment techniques, including multiple-choice and short-answer marking.

The first version of Ceilidh was developed in 1988 and used to support a C programming
course. The second phase of development was funded through Nottingham University’s
Enterprise in Higher Education (EHE) initiative, and resulted in Ceilidh being used to support
a C++ course for a class of 160 in the 1991/92 session. At present, Ceilidh is at the centre of
a UFC Teaching and Learning Technology Programme (TLTP) project — Courseware for the
Automatic Assessment of Programming — which aims to pilot the system at over 30
departments of Computer Science throughout the UK in the next three years. Ceilidh has also
been installed at sites in North America, Australia, Belgium, India, Malaysia, New .Zealand,
Portugal, Russia and Spain. Beyond this, Ceilidh should be of interest within the many other
disciplines involved in teaching computer programming (particularly in engineering and
science) and also computer centres which are often heavily involved in service teaching. The
administrative side of Ceilidh might also interest a much broader range of people.

Overview of Ceilidh

Let us begin with an overview of the functionality of the Ceilidh system, starting with a
high-level summary of the functions available, and moving on to a more detailed examination
of the steps involved in setting up, completing and marking a programming exercise. The
logical structure of the Ceilidh system is summarized in Figure 1.

Ceilidh can support a number of on-going courses. Each course is divided into units
representing different chapters or topics. Each unit may include a number of exercises which
may be programming exercises, short-answer questions or essay questions. Of these,
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Figure 1: The Ceilidh information structure

* programming and short-answer exercises are supported by automated assessment facilities.
Essay-style exercises include facilities for online collection of work for later paper
hand-marking.

The overall functionality of Ceilidh is categorized according to four different classes of user:
students, tutors, teachers and course developers. Students use the system to obtain, complete
and mark work, and to access course resources such as notes, work and lecture schedules and
even the teachers. Tutors represent teaching assistants, and are provided with additional
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facilities to inspect work and to summarize the progress of individuals or groups of students.
Teachers are provided with facilities to administer entire courses. Course developers can
amend the course information including notes, exercises and test data. We now consider each
class of user in turn.

Student facilities
Ceilidh provides the following key facilities to students:

(i) It allows students to view general temporal course information such as hand-in times
for coursework and more permanent information such as lecture notes. This information
can be viewed on-line or to be printed.

(ii) It provides access to the questions set in exercises.

(iii) It offers outline program source (skeleton programs to be completed by students),
and associated modules and header files for exercises where appropriate, to assist in the
solution of programming exercises. For an essay exercise, an outline of the main
sections/heading expected in the essay may be given.

(iv) It allows students to edit, compile and test-run their computer programs. The extent
to which compilation details are hidden from the student is determined by the teacher.

(v) The students can submit their work to the system. If the exercise is programming, the
system will mark their program. A summary of the marks is made available to the
students to help them assess their program quality (and a copy of the program and of the
marks awarded is retained centrally for later reference). Marking can take place many
times providing an iterative process of development and assessment. If the exercise is an
essay, the system simply stores a copy of the solution.

(vi) It allows them to view a model solution, to run this solution, to view test data and to
run both their own solution and the model solution against the test data. The model
solution can be seen only after the deadline for submission has passed.

(vii) It allows them to comment on a specific exercise or on the system as a whole.
Comments are stored for later browsing by teachers.

(viii) It offers help facilities, including an overview of the marking metrics employed by
the system and a good programming style guide.

Tutor facilities

Ceilidh provides tutors with the following additional facilities:

(i) List details of the work submitted by all of the tutor’s students, or by any named
student. For each item of coursework, the listing gives a summary of the marks awarded -
and the time at which it was submitted, including whether it was early or lite. Details of
the work, such as the program source code and a more detailed breakdown of the marks,
can be inspected if requested.

(ii) List the names of students who have not submitted work, or who have submitted late.
(iii) List the marks awarded to students for a particular exercise.

(iv) Summarize the average marks across all the exercises on a given course.
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“Teacher facilities
Ceilidh provides teachers with the following additional facilities:

(i) Declare certain exercises to be open. These are the exercises on which the student will
be expected to work.

(i) Declare certain previously opened exercises to be late. Students submitting after this
_date will be warned that their work is late. For each exercise made late, the teacher will
be invited to request plagiarism tests, and overall class software metrics. The latter is
particularly important to enable the teacher to keep in close touch with the class progress,
and its strengths and weaknesses.

iii) Declare certain exercises to be closed. Students will no longer be able to submit
work for these exercises.

(iv) Teachers can browse and respond to the students’ comments.

(v) Set weighting and scaling factors so as to calculate final assessments from marked
exercises in any desired way.

Course developer facilities
Ceilidh provides course developers with the following additional facilities:

(i) Create new coursework, or amend existing coursework. The system prompts the user
to ensure that all the necessary data items have been input (see below). :
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Figure 2: Ceilidh X-Windows interface

59



Steve Benford et al. Computer-aided assessment and administraiion

(ii) Set up new courses and manage registers of tutors and students. The various different
roles within the Ceilidh system are illustrated in the screen dump of the X-Windows
interface in Figure 2.

Completing exercises

Let us consider in more detail the steps involved when a student completes a specific exercise.
We will consider programming exercises as these currently form the core of Ceilidh’s work.

The student selects the exercise to be tackled (a default is usually set by the teacher) and reads
the specification (the programming term for the question). Specifications form a reasonably
complete description of the problem to be tackled, and may vary greatly in complexity and
difficulty. Figure 3 shows a student viewing an early C++ exercise, and the skeleton file
provided.

Later in the course, specifications may run to several pages, including descriptions of C++
class definitions to be implemented or used, and details of exception states. The goal at this
stage is to develop the students’ ability to work to specification. More advanced tasks might
typically involve implementing a C++ class to work with a given interface program, writing a
program to use a given class, or writing a program which combines several given classes. For
example, the following specification might be given later on in our C++ course: :

A telephone book consists of an arbitrarily long collection of entries where each entry
contains a name and a number. Users can add new entries, delete entries, look up a
number belonging to a specific name, and produce an alphabetical listing of the whole
telephone book. A telephone book can be represented by a ‘Phonebook’ Abstract Data
Type which could be implemented in C++ as a ‘Phonebook’ class.

The following is an outline class definition for a simplified ‘Phonebook’ class.

Outline C++ class definition here

The following details should be carefully noted:
* A number of status codes are defined to be returned by Phonebook methods.

* Each person is limited to having a maximum of one entry (meaning that a person’s
name can only appear in one entry).

* A name cannot be the empty string.

* A phone number must consist of digits in the range 0-9 inclusive, and must be exactly
NUMBER_LENGTH digits long.

* The overloaded < operator produces a list of all entries currently in the Phonebook.
This list should be alphabetically ordered by name. .

The status codes have the following meanings:

OK - operation completed successfully.

BAD_NAME - the supplied name has the wrong format.
BAD_NUMBER - the supplied number has the wrong format.
ALREADY_EXISTS — an entry for this person already exists.
DOES_NOT_EXIST - there is no entry for this person.
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From this example, one can deduce that the current emphasis of Ceilidh is on encouraging
students to produce correct programs from existing specifications. Ceilidh may offer students
varying levels of support for developing their programs including skeleton implementation
files which provide common definitions and outline code, invocation of editors, automatic
compilation and linking and even automatic running of their program against test data. The
level of support provided can be tailored by the teacher throughout the course. Thus, at one
extreme, Ceilidh can provide a fully integrated implementation environment which completely
-shields the student from the details of the operating system, and at the other the student can be
exposed to all the details of compiling and linking (in our case at the Unix operating-system
level). A half-way house is also possible where Ceilidh invokes the necessary operating-
system commands but also echoes them back to the student. At any stage throughout
development, students can request the system to mark their program. A variety of standard
software metrics are used, combining dynamic and static analysis techniques — these are more
fully described in Zin (1991) and Benford (1993).

exercise Frame
EXERCISE/EXAHPLE i
[Getwe ] Eomeite ] et ] [Fiew Solution] [fest Bota |
[Eaie ] ] [Geck sdmit | [Copy Solstion] [option ]
#include <stream.h>
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// ¥ritten by EF 1983
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int fti
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ﬁ////////////////////////////////////////
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} // End wain
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Figure 3: Student viewing a question and skeleton program

A summary of the marks is made available to the students to help them assess their program’s
quality, and a common question concerns how the system helps students to identify the
problems with their program given the relatively terse summary of marks. The answer is that
Ceilidh does not try to identify what a problem is in detail — it only reports that there is one
and roughly what it is. The student is then expected to go back to his or her program and
figure out what is going on, usually by more extensive testing on his or her own. This seems
quite satisfactory, since the goal of the system is to aid the learning process, not to provide an
instant solution. However, we recognize that determining an appropriate level of feedback is a
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difficult issue, particularly in relation to the tightness of the specification and the generality of
the test data. Ceilidh leaves all these factors configurable to some degree.

A key feature of Ceilidh is that students can re-mark their work as many times as they like,
although a teacher may optionally impose a minimum time-delay between markings. The
system maintains a record of the full mark history for each piece of work, including the date
and time of submission. A copy of the current program is also held for later analysis. On
submission, the system notes whether the coursework is late and, if it is, asks the student if he
or she still wishes to go ahead with submission. It also asks if he or she wishes to comment
on the mark. Short-answer exercises are different in that the student is presented with an
on-line test in the form of a set of short questions. Ceilidh then reads simple answers in the
form of words, phrases or maybe whole sentences, and matches them against keywords
supplied by the teacher. Marks are recorded by the system.

Essay exercises involve the student reading the question and perhaps being given a skeleton
essay to complete which can be submitted back to the system when ready. The teacher may
then hand-mark the essays and enter the marks back into Ceilidh for subsequent processing.
Setting up exercises
In order to set up an exercise, the course developer needs to provide a number of files:

(i) A question/specification.

(ii) A working model solution or model answer.

(iii) A file of test data for each of the dynamic tests to be carried out in programming
exercises. Test data may ecither take the form of raw data to be input to the program, or
may take the form of a Unix shell script which can be used to drive the program in a
more flexible way.

(iv) A file of ‘keywords’ for each test. These are matched against the program output for
programming exercises and against the students’ responses for short-answer exercises.

The keywords are actually Unix regular expressions to be matched against the program’s
output. The use of regular expressions offers a high degree of flexibility in making this
comparison. For example, the expressions;

ft|feet

inslinches

[Ee]rror

might appear in the keywords for a distance conversion problem. Once again we can see that
the teacher needs to strike a careful balance between tightness of specification and flexibility
-of testing.

Finally, the teacher needs to provide a mark-weighting file which assigns a2 name and relative
mark-weighting to each test involved. Such a file for a simple distance problem might be:

15 Simple test
15 Simple test
20 Check ““feet’” “‘ins”’

62



ALTJ VOLUME 1 NUMBER 2

25 Inches > 12
25 Negative inches

The teacher may also configure the relative weighting of style and complexity tests if
required, and may even alter the relative weightings of the various software metrics used.

Monitoring progress

Both teachers and tutors have the ability to track the progress of individuals or groups of
students. This is supported by a statistical summary package within Ceilidh. Three kinds of
summary can be produced.

(i) A student summary shows the progress of an individual student over a given course.
This includes displaying his or her mark for each exercise along with the class average. It
also includes the number of submission attempts per exercise, thus providing some
indication of how hard the student found the exercise.

(i) An exercise summary displays the distribution of student marks for a given exercise,
including the number of submission attempts per student.

(iii) A course summary displays the average marks across the whole course, as well as
the average number of submissions across the whole course.

These facilities are available to tutors and teachers. Students are encouiagcd to obtain a
stripped-down personal summary of their own progress across a course. Summaries may be
presented as tables or as graphs which may appear on-screen or be printed. Facilities are also

B Grwplot
Percentage Student zvc Marks and Group Averages
100 SEE— Fray SN DENS S S T TR

40

1.1 1.2 2,5 2,6 2,7 3,2 3.6 3.7 4,3 4,4 455,21 5,2 5,5 6,1 6,4 6,6 7,17.,57,68.28.3
: Unit . Exercise .

" Figure 4: Student summary — mark (solid) against class average (dashed) for all
exercises
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provfded to batch-print summaries for each student on the course. For example, at
Nottingham, we have established the practice of mailing summaries to all tutors on a
fortnightly basis. Figure 4 shows a typical student summary.

The plagiarism detection tool provides a quite different kind of summary. This facility takes
all the solutions for a given exercise and compares them, looking for similarities. It reports
both near-misses and what it believes to be exact matches. The facility is quite sophisticated
in that it first removes all personalized aspects of each program (for example, comments and
identifier names) in order to arrive at a core structure before making the comparison.

Final assessment

The marking described so far is used to provide instantaneous feedback to students and staff,
but several additional issues have to be considered if the system is to be used for formal
assessment. First-comes that of weighting. When computing a final mark for a course, it may
not be sensible to give all exercises the same value (for example, early exercises are often
worth less than later ones). Secondly, the use of Ceilidh tends to result in high marks, often
above 80%. It is therefore necessary to scale marks to arrive at a final assessment in order to
comply with institutional marking conventions (for example, a 60% average in Ceilidh may
represent a basic pass on the course). Finally, there is the issue of deadlines for exercises and
the problems of dealing with late work. Ceilidh deals with these issues by letting the course
teacher set up two files, the weights and scale files. The weights file lists each exercise along
with an indication of its relative weighting and also its current status. The status may be open
so that work can be submitted; late so that work can be submitted but is noted as late; or
closed so that nothing can be submitted. The weights are used to automatically calculate a
weighted average course mark for each student. Teachers are provided with menu options to
set the weights and alter the status of exercises. A separate scale file allows a teacher to
define a scale mapping between raw marks obtained and marks on some final scale of
assessment. : : '

Implementation

In this section we very bricfly touch on some implementation issues. The current version of
Ceilidh runs under Unix and several of its derivatives. It provides three styles of user
interface:

(i) A line interface for dumb terminals.
(i) An X-Windows interface.

(iii) A command interface, where each Ceilidh facility is available as a Unix command.
This allows people to build their own interfaces on top of Ceilidh,.and to integrate it with
other applications.

" Work is also currently underway to port Ceilidh to a networked PC environment and to
provide a PC Microsoft Windows interface. :
Experiences with Ceilidh

Ceilidh was initially conceived and constructed not as a research project but out of the
necessity of having to teach programming to large first-year classes. Consequently, Ceilidh
has always been used to support real programming courses, and has evolved to meet the needs
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of these courses. The fact that Ceilidh was constructed while in actual use gave rise to many
difficulties, particularly in the area of managing rapid updates to a live system. However, the
great benefit of this approach is that instead of being an experimental prototype briefly
demonstrated in the research laboratory, Ceilidh is a fully working system that meets a real
need and that has evolved to meet the needs of teachers and students. :

Sources of feedback

Here we summarize our experiences of building and using Ceilidh. This summary does not
represent the results of a formal statistical/experimental evaluation of the effects of the system
on the educational process. Instead, it encapsulates several years of feedback, observation and
opinion from a wide range of sources. These include:

(i) Our own subjective view as teachers and implementors.

(ii) Analysis of user-questionnaires. Ceilidh contains questionnaires about the system and
the courses supported, and these are made available online at the end of each course.

(iif) Archives of the many student comments and questions submitted through the online
comment facility.

(iv) The marks obtained across three years of use.

(v) Experiences of discussing Ceilidh in examiners’ meetings.

(vi) Feedback from other members of staff passing on student comments from tutorials.
(vii) Feedback from other organizations involved in piloting the system worldwide.

(viii) Student essays discussing their opinions of the system. More specifically over 100
students recently answered the following essay question:

Does the Ceilidh system for teaching C++ produce good programmers who can write
high-quality, thoroughly tested and stylistically correct programs, or does it merely
Dproduce students who have learned how to ‘play the system’ and who effectively rely on
it to solve their problems for them?

Impact on students

" 'We begin this section with observations on the ways in which Ceilidh has affected different
kinds of student:

(i) The system has acted as a confidence builder for novice programmers who benefit
greatly from the kind of positive early feedback that arises from the carly simple
exercises. One particular aspect of this has been building the confidence of female
students who may often initially feel intimidated by the ‘macho’ image associated with
programming.

(ii) The system has enabled us to spot the really weak students early on, enabling us to
focus effort on helping them.

(iii) Nearly all the critical feedback has come from experienced students, particularly
over the marks assigned. The notion of good programming style was a particularly
contentious issue, and we had several discussions on the issues of style and
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standardization of layout. This turned out to be beneficial as it is the self-taught ‘experts’
who often need the most help in this area (even if they think they do not).

This last observation is of key importance. One of the most surprising and pleasing aspects of
Ceilidh was its role in consciousness-raising. The provision of immediate feedback by a
machine produced much more discussion of programming correctness and style than did
previous hand-marking. Ceilidh’s online comment facility played a key role in this discussion,
and one of the early extensions to the system was to offer the students the opportunity to
comment on each mark when given. Consequently, our experience of automatic assessment is
that far from reducing contact with students, the quantity and quality of discussion is
increased. Looking back, we suspect that this effect stems from a number of factors. Firstly,
immediate feedback means that marks are received while the problem is uppermost in a
student’s mind. Secondly, students may be happier to argue with a machine than with a
‘teacher. Thirdly, the marking process is generally more open to inspection than with
hand-marking (for example, style rules are published and are applied -consistently). As a
further comment, hand-marking of any form of coursework can lead to a student being treated
less fairly than others. For instance, coursework marked by more than one person will lead to
inconsistencies in marks awarded due to differing ideas of what the correct answer should be.
This coupled with other problems such as racism, sexism and favouritism can lead to certain
students achieving poorer or better marks than they deserve. We believe that such explicit
discrimination is reduced, if not eliminated, by the use of the Ceilidh system, since it marks
each solution consistently. However, we recognize that implicit discrimination through
inappropriately chosen questions must still be guarded against.

Of course, the introduction of Ceilidh was not without its problems and we did observe a
number of more negative reactions to the system. One problem-group came to be known as
the Perfectionists. These students seemed unable to stop working on an exercise even when a
satisfactory mark had been obtained. A second problem-group was that of Gamblers: students
who iterated around the marking cycle many times, tweaking their programs in an attempt to
pick up extra marks without necessarily thinking through the problem at hand. Perfectionists
and Gamblers resulted in our making two further extensions to the system. The first was to
introduce a minimum time-delay between markings during which time a student could not
re-mark his or her program. This delay is tailorable by the teacher, and may range from a few
seconds to several days. A more general advantage of this extension is that it allows Ceilidh
marking to be used in a once-only fashion if the teacher wishes. The second extension was to
stretch the progress-monitoring facilities to spot the problem-students. This involved three
new facilities:

(i) Producing graphs of number of marking attempts per student across an exercise or
course.

(ii) Producing graphs of the ‘development profile’ for each student completing an
exercise. The development profile charts the mark obtained against each marking attempt
and so visually shows progress across an exercise.

(iii) Calculating and producing graphs of a ‘development ratio’ for each student and
exercise, a numerical measure that indicates whether the student has been making
progress.

66



ALTJ ‘ VOLUME 1 NUMBER 2

The development ratio is calculated as the ratio of the number of times a student’s mark
increases minus the number of times it decreases divided by the total number of marking
attempts. This results in a scaled numerical measure in the range +1 to -1 which shows
general progress across an exercise. At the extremes, +1 indicates the student’s mark always
increased on each successive re-marking, and -1 that it always decreased. A development ratio
of 0 would indicate that no progress was made, and one close to O that little progress was
made. Ceilidh automatically calculates these ratios for all students and exercises, and can
display them graphically. As an example, Figure 5 shows the developmert profile (i.e. mark
awarded plotted against the submission attempt) for an individual doing a single exercise. In
this case, we see a steady improvement in the mark awarded with each attempt until nearly
100% is reached.

Gruplot

Mark HMark Profile for Student klw, Unit 8 Exe 3
iw L L] T T

Attempt

Figure 5: Example graph of pfogress on an exercise

We emphasize that the development profile and ratio provide only a rough general guide to
progress, not a certain measure. Furthermore, graphs have been used by staff to spot potential
problems and have not counted towards final marks. Graphs provide teachers with a rough
guide to potential problem-students (for example, Perfectionists or Gamblers) who might need
additional teaching support. Teachers might then encourage these students to change their
working method, either by leaming better to manage their work according to sensible quality
targets, or to think more about the problem at hand before changing their program. In more
general terms, the cases of Perfectionists and Gamblers both highlight Ceilidh’s role in
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encouraging students to manage their own work in an effective way. We believe that this is
possible because Ceilidh devolves greater responsibility to students for determining final
marks, and therefore for managing their work load.

Before passing on, we should briefly mention one hidden problem. Ceilidh requires that
students hand in their work in electronic format. Indeed, at Nottingham we currently insist
that nearly 75% of all core first-year work is handed in online (not just programs). This makes
it difficult for students to work with pen and paper in their own residences. Of course, many
students own their own computers and are able to transfer their work across to our system.
However, we fear that those who do not may be disadvantaged. We believe that the solution
to this problem quite simply (in technical if not financial terms) lies in the provision of a
better computing infrastructure. In particular, we would like to see all our students armed with
personal or notebook computers within the next few years.

Impact on teachers and tutors

So far, we have considered Ceilidh’s effect on the students. We also need to consider its
effect on the staff. The clear and simple benefit to teachers has been a massive reduction in
time spent marking students’ programs. Ceilidh has also helped with more -efficient
administration of courses. Collection and collation of work has been trivial, deadlines are
published in advance and are stuck to, and marks are returned to examiners on time. Ceilidh
also helps with the trivial, but often annoying, aspects of coursework such as making sure that
work is clearly labelled and legible. This was particularly noticeable where the collection and
collation of essays was concerned. Clearly some of these issues extend to courses other than
programming.

The general progress monitoring facilities within Ceilidh have been of benefit to both tutors
and teachers and have allowed us to keep track of our students. As an example, some tutors
actually hand out progress charts to students during tutorials to confirm progress on the
course. Interestingly, far from viewing this as a Draconian regime, as some people feared,
many students seem to appreciate regular confirmation of satisfactory progress.

Use in formal assessment

Ceilidh is used both to give feedback to students and for formal course assessment. The
current first semester programming course at Nottingham is entirely coursework-assessed and
the second is 50% coursework-assessed with the other 50% being a formal written
examination. This dual use of Ceilidh has given rise to several interesting issues. Not only
does the iterative use of auto-assessment tend to result in very high raw marks (with marks
around 80% and 90% being common) but also the marks tend to be far more tightly grouped
(often the case in continuous assessment). Even with the scaling facilities mentioned
previously, it may be difficult to categorize the students according to an ‘expected’ normal
distribution. This raises the issue of the relation between feedback and assessment. Indeed, it
is obvious that Ceilidh, by providing interactive feedback, is increasing the likelihood of
obtaining high marks. One solution is to re-mark the students’ work at the end of the course
using different criteria (for example, using different and harder tests and more rigorous style
checking). However, we then encounter the problem that students feel cheated because the
system has been reporting excellent progress which may not match their final mark. In
general, this issue relates to whether we are seeking mormative or criterion assessment of
students. So far we have used Ceilidh on first-year foundation courses where criterion
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assessment is a sensible approach (i.c. if you can demonstrate the necessary skills, you can
pass the course). The role of Ceilidh, and indeed of any iterative auto-assessment technique,
may be limited where normative assessment is required (i.e. on courses in later years).

The issue of students feeling cheated is also an interesting one. There is a danger that Ceilidh
might encourage students in the belief that the ability to pass a few tests makes their programs
certifiably correct. Of course, this is not true, and it is recognized that testing, no matter how
thorough, does not prove program correctness. It is therefore important that teachers carefully
introduce the notion of program correctness and its relation to testing, particularly with respect
to other approaches such as the use of formal methods in program verification. :

Use at other sites

So far, Ceilidh has been installed at 25 sites outside Nottingham and has been used to teach
courses in at least five of these. Styles of use have been quite diverse. More than one site has
informed us that they installed the system and ran our course directly as given, even using our
slides for lecturing. Other sites found it more difficult to accept the given course structure but
were happy to use the exercises to form their own course. At the other extreme, one site used
the Ceilidh system as an envelope to write an entirely new course for a different programming
language (Pascal). This also necessitated slotting their own auto-assessment module into the
Ceilidh framework. This course has now been re-installed at Nottingham and will soon be
distributed to other pilot sites.

One key point to emerge from early piloting has been the importance of providing an open
and extensible framework for Ceilidh. Not only should staff be able to build their own
exercises, units and courses, but should also be able to bolt in their own marking modules for
other programming languages or even for other kinds of assessment (we know of at least onc
other sitc where automated essay marking is being researched). In particular, there should be a
separation between Ceilidh’s general course administration framework and different marking
techniques, with the latter ranging from completely automated marking though semi-
automation to hand-marking. Although our current experience would broadly agree with
Laurillard et al (1993) in that ‘the Not Invented Here syndrome is not a major influence on
academics considering the use of CBL’, we would also stress that courseware should aim to
provide as modular a framework as possible so as to allow teachers to mix and match
resources, blending them into their own courses with individually tailored structures.

Multi-site use also requires support for the ability to transfer resources across networks for
installation in local systems. In turn, this requires the development of adequate standards for
course and resource structure (for example, is our current course-unit-exercise hicrarchy
general enough?). It also requires integration with more general information dissemination
technologies including email, file transfer, directory services and network information
retrieval systems (for example, Gopher, WAIS, Archie and World Wide Web).

We are hoping that our current pilot project will help develop the necessary standards and
undertake the necessary integration to achieve this.

Future work

Future developments of Ceilidh fall into two categories. Those that are scheduled to take
- place during the TLTP pilot project, and more general developments.
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During the TLTP pilot project, the following developments are scheduled:
(i) Porting Ceilidh to a networked PC environment.

(ii) Supporting additional programming languages. The wofking set should at least
include C++, C, Pascal, Modula-2, ADA and ML.

 (iii) Providing an extended statistics-gathering and progress-monitoring facility.

(iv) Integrating the current crude facility for reading course notes with common authoring
and hypertext systems (key candidates include Authorware and Guide)

(v) Developing full X-Windows and Microsoft Windows interfaces.

(vi) Extending the current ‘comment’ facility towards a fully-fledged Help Desk with
support for rostering queries between a team of advisers working across a computer
network.

(vii) Extending facilities for exchanging course resources (e.g. notes and exercises)
between sites, perhaps via integration with emerging network information retrieval
systems.

A further goal for the near future is to conduct a more formal evaluation of the Ceilidh
system. Some limited funding has recently been obtained towards this end, and we hope to
compare student performance under Ceilidh with other indicators such as examination results
and A-level entry grades. We also aim to carry out some marking experiments comparing
automatic and human marking of the same scripts.

We plan a number of longer-term Ceilidh developments. Firstly, we will try to integrate the
systtm with other local administration facilities, including Nottingham University’s
examinations and timetabling databases. We also aim to provide greater support for
co-operative working. We plan experimental integration of conference facilities (both audio
and text) to support discussion between students and staff, and also inclusion of bulletin board
- facilities. Our target here is a kind of networked programming laboratory distributed across
several sites. :

A final word: we would like to stress that Ceilidh is a fully working system and available
from the authors. ' _
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