A comparative analysis of the effects of instructional design factors on student success in e-learning: multiple-regression versus neural networks
Abstract
This study explores the relationship between the student performance and instructional design. The research was conducted at the E-Learning School at a university in Turkey. A list of design factors that had potential influence on student success was created through a review of the literature and interviews with relevant experts. From this, the five most import design factors were chosen. The experts scored 25 university courses on the extent to which they demonstrated the chosen design factors. Multiple-regression and supervised artificial neural network (ANN) models were used to examine the relationship between student grade point averages and the scores on the five design factors. The results indicated that there is no statistical difference between the two models. Both models identified the use of examples and applications as the most influential factor. The ANN model provided more information and was used to predict the course-specific factor values required for a desired level of success.
Keywords: e-learning; distance education; instructional design factors; multimedia systems; artificial neural networks
DOI: 10.1080/09687760802649889
Downloads
Authors contributing to Research in Learning Technology retain the copyright of their article and at the same time agree to publish their articles under the terms of the Creative Commons CC-BY 4.0 License (http://creativecommons.org/licenses/by/4.0/) allowing third parties to copy and redistribute the material in any medium or format, and to remix, transform, and build upon the material, for any purpose, even commercially, under the condition that appropriate credit is given, that a link to the license is provided, and that you indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.