Learning to teach mathematics with robots: Developing the ‘T’ in technological pedagogical content knowledge
Abstract
A multiple case study was conducted to investigate how Lego robotics instruction incorporated into a middle grades mathematics methods course could inform pre-service teachers’ (PSTs) TPACK through the lens of Social Constructivist Theory. The qualitative data analysis revealed that when instruction on Lego robotics technology is integrated into semester long mathematics methods courses, PSTs are able to improve their TPACK knowledge in regard to the robotics. Overall, the findings suggest instruction of educational technology tools should be incorporated into methods courses over a longer duration of time, and in depth, to better support the development of PSTs’ TPACK. To meet the demands of the teacher shortages while simultaneously supporting the needs of school districts, this research provides preliminary evidence of the need to incorporate content-specific technology into all methods courses.
Downloads
References
Anderson, G. L. & Herr, K. (2005) The Action Research Dissertation: A Guide for Students and Faculty, Sage, Thousand Oaks, CA.
Carbonaro, M., Rex, M. & Chambers, J. (2004) ‘Using LEGO Robotics in a project-based learning environment’, The Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, vol. 6, no. 1.
Casler-Failing, S. (2018a). ‘Robotics and math: using action research to study growth problems’, Canadian Journal of Action Research, vol. 19, no. 2, pp. 4–25. doi: 10.33524/cjar.v19i2.383
Casler-Failing, S. (2018b). ‘The effects of integrating LEGO robotics into a mathematics curriculum to promote the development of proportional reasoning’, Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, vol. 2, no. 5, pp. 24–35. doi: 10.20429/stem.2018.020105
Chambers, J. M. & Carbonaro, M. (2003) ‘Designing, developing, and implementing a course on Lego robotics for technology teacher education’, Journal of Technology and Teacher Education, vol. 11, no. 2, pp. 209–241.
Christensen, R. (2002) ‘Effects of technology integration education on the attitudes of teachers and students’, Journal of Research on Technology in Education, vol. 34, no. 4, pp. 411–434. doi: 10.1080/15391523.2002.10782359
Cochran-Smith, M. & Lytle, S. L. (1993) Inside/Outside:Teacher Research and Knowledge, Teacher’s College Press, New York.
Costa, A. L. & Kallick, B. (1993) ‘Through the lens of a critical friend’, Educational Leadership, vol. 51, no. 2, pp. 49–51.
Creswell, J. W. (2007) Qualitative Inquiry and Research Design: Choosing among Five Traditions, 2nd edn, Sage, Thousand Oaks, CA.
Di Blas, N. (2016.) ‘Distributed TPACK: what kind of techers does it work for?’, Journal of e-Learning and Knowledge Society, vol. 12, no. 3, pp. 65–74.
Glaser, B. G. & Strauss, A. L. (1965) ‘Discovery of substantive theory: a basic strategy underlying qualitative research’, American Behavioral Scientist, vol. 8, no. 6, pp. 5–12. doi: 10.1177/000276426500800602
Grbich, C. (2013) Qualitative Data Analysis: An Introduction, 2nd edn, Sage, London.
Howland, J. & Wedman, J. (2004) ‘A process model for faculty development: individualizing technology learning’, Journal of Technology and Teacher Education, vol. 12, no. 2, pp. 239–262.
Huang, Z. (2018) ‘Theoretical analysis of TPACK knowledge structure of mathematics teachers based on T-TPACK mode’, Educational Sciences: Theory and Practice, vol. 18, no. 5, pp. 2044–2053.
Hubbard, R. S. & Miller Power, B. (2003) The Art of Classroom Inquiry: A Handbook for Teacher-Researchers, Heinemann, Portsmouth.
Koehler, M. J. & Mishra, P. (2009) ‘What is technological pedagogical content knowledge?’, Contemporary Issues in Technology and Teacher Education, vol. 9, no. 1, pp. 60–70.
Martinez Ortiz, A. (2015) ‘Examining students’ proportional reasoning strategy levels as evidence of the impact of an integrated LEGO robotics and mathematics learning experience’, Journal of Technology Education,vol. 26, no. 2, pp. 46–69. https://doi.org/10.21061/jte.v26i2.a.3
Mishra, P. & Koehler, M. J. (2006) ‘Technological pedagogical content knowledge: a framework for teacher knowledge’, Teachers College Record, vol. 108, no. 6, pp. 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
NCTM. (2014) Principles to Actions: Ensuring Mathematical Success for All, National Council of Teachers of Mathematics, Reston, VA.
Niess, M. (2005) ‘Preparing teachers to teach science and mathematics with technology: developing a technology pedagogical content knowledge’, Teaching and Teacher Education, vol. 21, no. 5, pp. 509–523. doi: 10.1016/j.tate.2005.03.006
Papert, S. (1980) Mindstorms: Children, Computers, and Powerful Ideas, 2nd edn, Basic Books, New York.
Patton, M. Q. (2002) Qualitative Research and Evaluation Methods, Sage, Thousand Oaks, CA.
Porras-Hernández, L. H. & Salinas-Amescua, B. (2013) ‘Strengthening TPACK: a broader notion of context and the use of teacher’s narratives to reveal knowledge construction’, Journal of Educational Computing Research, vol. 48, no. 2, pp. 223–244. https://doi.org/10.2190/EC.48.2.f
Rosenberg, J. M. & Koehler, M. J. (2015) ‘Context and technological pedagogical content knowledge (TPACK): a systematic review’, Journal of Research on Technology in Education, vol. 47, no. 3, pp. 186–210. doi: 10.1080/15391523.2015.1052663
Saldaña, J. (2016) The Coding Manual for Qualitative Researchers, 3rd edn, Sage, London.
Schmid, M., Brianza, E. & Petko, D. (2021) ‘Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans’, Computers in Human Behavior, vol. 115, pp. 1–12. https://doi.org/10.1016/j.chb.2020.106586
Shulman, L. S. (1986) ‘Those who understand: knowledge growth in teaching’, Educational Researcher, vol. 15, no. 2, pp. 4–14. doi: 10.3102/0013189X015002004
So, H.-J. & Kim, B. (2009) ‘Learning about problem based learning: student teachers integrating technology, pedagogy, and content knowledge’, Australasian Journal of Educational Technology, vol. 25, no. 1, pp. 101–116. doi: 10.14742/ajet.1183
Sullivan, F. R. & Heffernan, J. (2016) ‘Robotic construction kits as computational manipulatives for learning in the STEM disciplines’, Journal of Research on Technology in Education, vol. 48, no. 2, pp. 1–24. doi: 10.1080/15391523.2016.1146563
Vygotsky, L. S. (1978) Mind in Society, Harvard University Press, Cambridge.
Willermark, S. (2018) ‘Technological pedagogical and content knowledge: a review of empirical studies published from 2011 to 2016’, Journal of Educational Computing Research, vol. 56, no. 3, pp. 315–343. doi: 10.1177/0735633117713114
Willingham, D. T. (2009) Why Don’t Students Like School?, Jossey-Bass, San Francisco, CA.
Yarbro, J., et al., (2016) ‘Digital instructional strategies and their role in classroom learning’, Journal of Research on Technology in Education, vol. 48, no. 4, pp. 274–289. doi: 10.1080/15391523.2016.1212632
Yin, R. K. (2018) Case Study Research: Design and Methods, 6th edn, Sage, Thousand Oaks, CA.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to Research in Learning Technology retain the copyright of their article and at the same time agree to publish their articles under the terms of the Creative Commons CC-BY 4.0 License (http://creativecommons.org/licenses/by/4.0/) allowing third parties to copy and redistribute the material in any medium or format, and to remix, transform, and build upon the material, for any purpose, even commercially, under the condition that appropriate credit is given, that a link to the license is provided, and that you indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.